Siirry pääsisältöön

Imperial Mining Group Ltd
(SCD)

- · -
- · Valuutta
-
Viimeisin
-
Tänään %
-
Tänään +/-
-
Osta
-
Myy
-
Ylin
-
Alin
-
Vaihto (määrä)
-
- · -
- · Valuutta
-
- · - · Valuutta
- · Valuutta
-
Viimeisin
-
Kehitys tänään
-
-
Osta
-
Myy
-
Ylin
-
Alin
-
Vaihto (määrä)
-

Tarjoustasot

Dataa ei löytynyt.

Viimeisimmät kaupat

AikaHintaMääräOstajaMyyjä
----

Huomioi, että vaikka osakkeisiin säästäminen on pitkällä aikavälillä tuottanut hyvin, tulevasta tuotosta ei ole takeita. On olemassa riski, että et saa sijoittamiasi varoja takaisin.

Välittäjätilasto

Dataa ei löytynyt

Yhtiötapahtumat

Seuraava tapahtuma
Menneet tapahtumat

Tuotteita joiden kohde-etuutena tämä arvopaperi

Ei saatavilla tälle kohde-etuudelle: Nordnet Markets Sertifikaatit . Näytä muut Sertifikaatit

Asiakkaat katsoivat myös

Uutiset ja analyysit

Ei uutisia tällä hetkellä
Tämän sivun uutiset ja/tai sijoitussuositukset tai otteet niistä sekä niihin liittyvät linkit ovat mainitun tahon tuottamia ja toimittamia. Nordnet ei ole osallistunut materiaalin laatimiseen, eikä ole tarkistanut sen sisältöä tai tehnyt sisältöön muutoksia. Lue lisää sijoitussuosituksista.

Uutiset ja analyysit

Ei uutisia tällä hetkellä
Tämän sivun uutiset ja/tai sijoitussuositukset tai otteet niistä sekä niihin liittyvät linkit ovat mainitun tahon tuottamia ja toimittamia. Nordnet ei ole osallistunut materiaalin laatimiseen, eikä ole tarkistanut sen sisältöä tai tehnyt sisältöön muutoksia. Lue lisää sijoitussuosituksista.

Yhtiötapahtumat

Seuraava tapahtuma
Menneet tapahtumat

Tuotteita joiden kohde-etuutena tämä arvopaperi

Ei saatavilla tälle kohde-etuudelle: Nordnet Markets Sertifikaatit . Näytä muut Sertifikaatit

Shareville

Liity keskusteluun SharevillessäShareville on aktiivisten yksityissijoittajien yhteisö, jossa voit seurata muiden asiakkaiden kaupankäyntiä ja omistuksia.
Kirjaudu
  • Scandium doped SrTiO3 photocatalyst for Hydrogen production An efficient particulate photocatalyst for overall water splitting based on scandium and magnesium co-doped strontium titanate. Isotropically-rounded polygonal-shaped particles of almost phase-pure SrTiO3 crystals were obtained from SrTiO3 particles co-doped with Al and Sc (SrTiO3:Al,Sc) and Al and Mg (SrTiO3:Al,Mg), whereas, the cubic-shaped particles having specific nanosized steps on the edge of each particle were obtained by co-doping with Sc and Mg (SrTiO3:Sc,Mg). Apparent quantum yields (AQYs) for overall water splitting at a band edge region (365 nm) were examined using these SrTiO3 samples loaded with Rh/Cr2O3 and CoOOH cocatalyst nanoparticles (for H2 and O2 evolution, respectively), and it reached the highest (66%) when the photocatalyst based on SrTiO3:Sc,Mg was used. The best photocatalytic performance obtained over the photocatalyst is attributed to the achievement of the separation of reaction sites for reduction and oxidation of water, i.e., the former reaction occurred on the Rh/Cr2O3 cocatalyst selectively deposited on the flat {100} facets of the SrTiO3:Sc,Mg particle, whereas the later O2 evolution occurred on the CoOOH cocatalyst that was only deposited on the nanosized step part on the particle. https://pubs.rsc.org/en/content/articlelanding/2024/se/d3se01408h
  • Emissions reduction in various sectors using Sc-Al alloys Scandium is a highly versatile metal - minor adding under 0.5% will make the difference!   The rapid growth of industrialization and transportation has led to increasing concerns over greenhouse gas emissions and their impact on climate change. As a result, industries are constantly seeking innovative solutions to reduce their carbon footprint. One promising avenue is the integration of new aluminium-scandium (Al-Sc) alloys, which offer unique properties and capabilities to address emissions reduction in various sectors. This paper delves into the role of Al-Sc alloys in five key areas: aerospace, automotive, shipbuilding, additive manufacturing, and high-voltage (HV) conductors. In the automotive sector, Al-Sc alloys present an opportunity to streamline production and minimize emissions by consolidating the number of alloys used in vehicle construction. For instance, by replacing conventional 6xxx-series alloys with 5xxx-series+Sc for both inner and outer panels, the need for aging processes is eliminated, further reducing CO2 emissions. In airplane manufacturing, the traditional 2024 sheet alloy, which requires an additional Al cladding, can be replaced by the 5028 Al-Mg-Zr-Sc alloy resulting in a 4–5% weight saving. In shipbuilding, the adoption of 5xxx-series +Sc alloys proves advantageous as it can enhance weld strength and mitigate sensitization issues. Consequently, vessels’ service life could be extended while reducing overall weight, leading to notable emissions reductions. Furthermore, the potential of Al-Sc alloys in additive manufacturing (AM) is explored. Tailored alloy compositions developed for AM applications, with strategic scandium and zirconium content, enable in-situ precipitation during the AM process. This can eliminate the need for post-aging, making large-scale AM more feasible and cost-effective while promoting emission reductions. Lastly, we discuss the application of Al-Sc alloys in HV conductors. By incorporating scandium, these conductors can achieve increased strength without significant compromise to electrical conductivity, fostering a greener power transmission infrastructure. In conclusion, the utilization of new aluminium-scandium alloys presents a promising pathway to curbing emissions in multiple industries, signalling a transformative shift towards more sustainable practices and environmental stewardship. https://www.researchgate.net/publication/377951097_The_Role_of_New_Aluminium-Scandium_Alloys_for_Emission_Reduction_in_Various_Sectors
  • Better properties for Al-Zn-Mg-Cu alloy by adding Scandium Diya Mukherjee, Himadri Roy, Balaji Chandrakanth, Nilrudra Mandal, Sudip Kumar Samanta, Manidipto Mukherjee, Enhancing properties of Al-Zn-Mg-Cu alloy through microalloying and heat treatment, Materials Chemistry and Physics, Volume 314, 2024, 128881, ISSN 0254-0584, https://doi.org/10.1016/j.matchemphys.2024.128881. Main points: - Addition of 0.25 wt % Sc significantly refines the grain structure, reducing the grain size from 62 μm to 34 μm and increasing Al3Zr, Al3(Zr, Ti), and Al3(Sc, Zr) precipitate fraction. - Sc-added alloy achieves 28 % higher strength due to fine dispersoids. https://www.sciencedirect.com/science/article/pii/S0254058424000051
  • Scandium addition improves properties of Titanium alloy ''Improving thermal stability and creep resistance by Sc addition in near-α high-temperature titanium alloy'' Scandium additions of 0.5 % making clear effect on titanoim alloy properties ''Conclusions The near-α Ti-6.5A1–2.5Sn-9Zr-0.5Mo-1Nb-1W-0.3Si alloys with different content of Sc were prepared for aerospace applications. The mechanical properties of alloys before and after thermal exposure and creep resistance were investigated, and the effect of Sc on the microstructure and thermal stability was systematically analyzed. The main conclusions are summarized below: (1)Sc refines the lamellar secondary α phase, the formation of Sc2O3 improves the strength, while excessive Sc2O3 becomes the crack source in the tensile process, which deteriorates the plasticity of the alloy. (2)The oxygen content in the matrix is reduced with the Sc addition, which inhibits the growth of the Ti3Al phase and slows down alloy plasticity loss. The thermal stability of the alloy is improved. (3)Sc improves the dispersion of primary silicides. Also, it accelerates the precipitation of silicides in the α/β phase boundary of the titanium alloys during creep. (4)The refined lamellar secondary α phases, Sc2O3 particles, Ti3Al phase, and silicides together contribute to the enhancement of creep resistance for the Sc-containing alloy, especially the silicides precipitation exhibits a strong effect in preventing dislocation movement.'' https://www.sciencedirect.com/science/article/pii/S1005030223009362
  • Scandium filters versatile for 5G and 6G applications This is quite scientific paper but the simplified conclusion is that Scandium containing radio wave filters can dramatically improve quality and thus deployment of 5G and 6G related applications.   ''Compact and wideband nanoacoustic pass-band filters for future 5G and 6G cellular radios'' https://www.nature.com/articles/s41467-023-44038-9
Yllä olevat kommentit ovat peräisin Nordnetin sosiaalisen verkoston Sharevillen käyttäjiltä, ​​eikä niitä ole muokattu eikä Nordnet ole tarkastanut niitä etukäteen. Ne eivät tarkoita, että Nordnet tarjoaisi sijoitusneuvoja tai sijoitussuosituksia. Nordnet ei ota vastuuta kommenteista.

Uutiset ja analyysit

Ei uutisia tällä hetkellä
Tämän sivun uutiset ja/tai sijoitussuositukset tai otteet niistä sekä niihin liittyvät linkit ovat mainitun tahon tuottamia ja toimittamia. Nordnet ei ole osallistunut materiaalin laatimiseen, eikä ole tarkistanut sen sisältöä tai tehnyt sisältöön muutoksia. Lue lisää sijoitussuosituksista.

Shareville

Liity keskusteluun SharevillessäShareville on aktiivisten yksityissijoittajien yhteisö, jossa voit seurata muiden asiakkaiden kaupankäyntiä ja omistuksia.
Kirjaudu
  • Scandium doped SrTiO3 photocatalyst for Hydrogen production An efficient particulate photocatalyst for overall water splitting based on scandium and magnesium co-doped strontium titanate. Isotropically-rounded polygonal-shaped particles of almost phase-pure SrTiO3 crystals were obtained from SrTiO3 particles co-doped with Al and Sc (SrTiO3:Al,Sc) and Al and Mg (SrTiO3:Al,Mg), whereas, the cubic-shaped particles having specific nanosized steps on the edge of each particle were obtained by co-doping with Sc and Mg (SrTiO3:Sc,Mg). Apparent quantum yields (AQYs) for overall water splitting at a band edge region (365 nm) were examined using these SrTiO3 samples loaded with Rh/Cr2O3 and CoOOH cocatalyst nanoparticles (for H2 and O2 evolution, respectively), and it reached the highest (66%) when the photocatalyst based on SrTiO3:Sc,Mg was used. The best photocatalytic performance obtained over the photocatalyst is attributed to the achievement of the separation of reaction sites for reduction and oxidation of water, i.e., the former reaction occurred on the Rh/Cr2O3 cocatalyst selectively deposited on the flat {100} facets of the SrTiO3:Sc,Mg particle, whereas the later O2 evolution occurred on the CoOOH cocatalyst that was only deposited on the nanosized step part on the particle. https://pubs.rsc.org/en/content/articlelanding/2024/se/d3se01408h
  • Emissions reduction in various sectors using Sc-Al alloys Scandium is a highly versatile metal - minor adding under 0.5% will make the difference!   The rapid growth of industrialization and transportation has led to increasing concerns over greenhouse gas emissions and their impact on climate change. As a result, industries are constantly seeking innovative solutions to reduce their carbon footprint. One promising avenue is the integration of new aluminium-scandium (Al-Sc) alloys, which offer unique properties and capabilities to address emissions reduction in various sectors. This paper delves into the role of Al-Sc alloys in five key areas: aerospace, automotive, shipbuilding, additive manufacturing, and high-voltage (HV) conductors. In the automotive sector, Al-Sc alloys present an opportunity to streamline production and minimize emissions by consolidating the number of alloys used in vehicle construction. For instance, by replacing conventional 6xxx-series alloys with 5xxx-series+Sc for both inner and outer panels, the need for aging processes is eliminated, further reducing CO2 emissions. In airplane manufacturing, the traditional 2024 sheet alloy, which requires an additional Al cladding, can be replaced by the 5028 Al-Mg-Zr-Sc alloy resulting in a 4–5% weight saving. In shipbuilding, the adoption of 5xxx-series +Sc alloys proves advantageous as it can enhance weld strength and mitigate sensitization issues. Consequently, vessels’ service life could be extended while reducing overall weight, leading to notable emissions reductions. Furthermore, the potential of Al-Sc alloys in additive manufacturing (AM) is explored. Tailored alloy compositions developed for AM applications, with strategic scandium and zirconium content, enable in-situ precipitation during the AM process. This can eliminate the need for post-aging, making large-scale AM more feasible and cost-effective while promoting emission reductions. Lastly, we discuss the application of Al-Sc alloys in HV conductors. By incorporating scandium, these conductors can achieve increased strength without significant compromise to electrical conductivity, fostering a greener power transmission infrastructure. In conclusion, the utilization of new aluminium-scandium alloys presents a promising pathway to curbing emissions in multiple industries, signalling a transformative shift towards more sustainable practices and environmental stewardship. https://www.researchgate.net/publication/377951097_The_Role_of_New_Aluminium-Scandium_Alloys_for_Emission_Reduction_in_Various_Sectors
  • Better properties for Al-Zn-Mg-Cu alloy by adding Scandium Diya Mukherjee, Himadri Roy, Balaji Chandrakanth, Nilrudra Mandal, Sudip Kumar Samanta, Manidipto Mukherjee, Enhancing properties of Al-Zn-Mg-Cu alloy through microalloying and heat treatment, Materials Chemistry and Physics, Volume 314, 2024, 128881, ISSN 0254-0584, https://doi.org/10.1016/j.matchemphys.2024.128881. Main points: - Addition of 0.25 wt % Sc significantly refines the grain structure, reducing the grain size from 62 μm to 34 μm and increasing Al3Zr, Al3(Zr, Ti), and Al3(Sc, Zr) precipitate fraction. - Sc-added alloy achieves 28 % higher strength due to fine dispersoids. https://www.sciencedirect.com/science/article/pii/S0254058424000051
  • Scandium addition improves properties of Titanium alloy ''Improving thermal stability and creep resistance by Sc addition in near-α high-temperature titanium alloy'' Scandium additions of 0.5 % making clear effect on titanoim alloy properties ''Conclusions The near-α Ti-6.5A1–2.5Sn-9Zr-0.5Mo-1Nb-1W-0.3Si alloys with different content of Sc were prepared for aerospace applications. The mechanical properties of alloys before and after thermal exposure and creep resistance were investigated, and the effect of Sc on the microstructure and thermal stability was systematically analyzed. The main conclusions are summarized below: (1)Sc refines the lamellar secondary α phase, the formation of Sc2O3 improves the strength, while excessive Sc2O3 becomes the crack source in the tensile process, which deteriorates the plasticity of the alloy. (2)The oxygen content in the matrix is reduced with the Sc addition, which inhibits the growth of the Ti3Al phase and slows down alloy plasticity loss. The thermal stability of the alloy is improved. (3)Sc improves the dispersion of primary silicides. Also, it accelerates the precipitation of silicides in the α/β phase boundary of the titanium alloys during creep. (4)The refined lamellar secondary α phases, Sc2O3 particles, Ti3Al phase, and silicides together contribute to the enhancement of creep resistance for the Sc-containing alloy, especially the silicides precipitation exhibits a strong effect in preventing dislocation movement.'' https://www.sciencedirect.com/science/article/pii/S1005030223009362
  • Scandium filters versatile for 5G and 6G applications This is quite scientific paper but the simplified conclusion is that Scandium containing radio wave filters can dramatically improve quality and thus deployment of 5G and 6G related applications.   ''Compact and wideband nanoacoustic pass-band filters for future 5G and 6G cellular radios'' https://www.nature.com/articles/s41467-023-44038-9
Yllä olevat kommentit ovat peräisin Nordnetin sosiaalisen verkoston Sharevillen käyttäjiltä, ​​eikä niitä ole muokattu eikä Nordnet ole tarkastanut niitä etukäteen. Ne eivät tarkoita, että Nordnet tarjoaisi sijoitusneuvoja tai sijoitussuosituksia. Nordnet ei ota vastuuta kommenteista.

Tarjoustasot

Dataa ei löytynyt.

Viimeisimmät kaupat

AikaHintaMääräOstajaMyyjä
----

Huomioi, että vaikka osakkeisiin säästäminen on pitkällä aikavälillä tuottanut hyvin, tulevasta tuotosta ei ole takeita. On olemassa riski, että et saa sijoittamiasi varoja takaisin.

Välittäjätilasto

Dataa ei löytynyt

Asiakkaat katsoivat myös

Yhtiötapahtumat

Seuraava tapahtuma
Menneet tapahtumat

Tuotteita joiden kohde-etuutena tämä arvopaperi

Ei saatavilla tälle kohde-etuudelle: Nordnet Markets Sertifikaatit . Näytä muut Sertifikaatit
© 2024 Nordnet Bank AB.
Nordnet | Yliopistonkatu 5, 3. krs | FI-00100 Helsinki